
Synthesis of Quasi-Bandlimited Analog Waveforms Using

Frequency Modulation /Draft, version 3/

Peter Schoffhauzer
scoofy@inf.elte.hu

Abstract
This paper investigates the possibilities of approximating bandlimited analog waveforms using fre-

quency modulation (FM synthesis), a technique often used in hardware and software synthesizers. The
goal was to create a waveform with the same spectral content as a saw or a pulse wave, which have linearly
spaced sine partials with a decay rate of 6dB/octave. A method is presented which creates a roughly good
approximation of bandlimited saw and pulse waveforms. A C pseudo code implementation is also given.

1 Introduction

Classic FM synthesizers, like the Yamaha DX se-
ries allow a waveform to modulate the frequency of
itself using a feedback loop. When the frequency of
a sine wave is modulated, additional harmonics are
created above the fundamental frequency. When
the sine wave is modulated by itself, harmonics are
created with a rolloff rate of 6dB/octave, similar to
the rolloff of the harmonics of a saw wave. After
a certain point, the harmonics roll off with a soft
knee, similar in effect to applying a four pole filter
to a saw wave, as seen in Figure 1.

Figure 1. Spectrum of a sine wave modulated by
itself

Note that a 6dB/Oct slope was applied to the
figure, so a bandlimited saw wave has peaks of equal
height. The bandwidth of the FM harmonics can
be controlled by scaling the output before feeding
back to the frequency. This should be higher for
low frequencies, and lower for high frequencies to
prevent aliasing.

2 Algorithm

The basic algorithm of the oscillator is the follow-
ing:

xn = sin(π(θ + βxn−1))

where xn is the output of the oscillator, θ is the
phase accumulator ranging from -1 to 1, and β is
the scaling function. The previous output sample
modulates the phase of the oscillator. The Yamaha
DX series use a similar method for frequency mod-
ulation. Using empirical methods, polynomial scal-
ing functions were tested. For a given ω normal-
ized frequency, the following equation was found
adequate:

β = 38(0.5− ω)6

This scaling function gave a good approximation of
a bandlimited saw wave, with a full sound and only
a slight amount of aliasing. However, some prob-
lems were encountered. One problem was a loud
high frequency ringing at Nyquist. Another prob-
lem was aliasing that appeared for middle and low
frequencies. The third problem was a loud reso-
nant ringing at samplerate/4 for very low frequen-
cies. These problems were attributed to the feed-
back path. To overcome these problems, the aver-
age of the output and the previous output of the
oscillator were taken, giving a smoothing effect for
the Nyquist ringing.

xn =
xn−1 + sin(π(θ + βxn−1))

2

This eliminated very well all three problems men-
tioned before. However, the scaling function needed
to be adjusted. The following function was found

1



to be good:

β = 13(0.5− ω)4

The spectrogram of a linear frequency sweep using
this equation is shown in Figure 2. The range of
the spectrogram is 0 to -90 dB.

Figure 2. Spectrogram of a linear frequency sweep

For high frequencies, aliasing may be reduced
somewhat on the expense of reducing brightness of
the wave by using a different scaling function, such
as:

β = 54(0.5− ω)6

The spectrogram obtained using this scaling func-
tion is shown in Figure 3.

Figure 3. Spectrogram of a linear frequency sweep

The aliasing is reduced, but it is noticeable both
on the spectrogram and by listening to the gener-
ated sounds that the brightness of higher frequency
waves is also reduced.

3 Improving the algorithm

With this method, a bandlimited saw-like wave
was created. However, there are some possible im-
provements. The algorithm described above gives a
rough approximation, and the high harmonics are
not as bright as in an ideal bandlimited wave, cre-
ated using inverse DFT for example. There is a
high frequency rolloff above around samplerate/10
compared to an ideal waveform. This is shown in
Figure 4.

Figure 4. HF rolloff of the basic implementation

To improve this, the idea was to spectrally in-
vert a one pole lowpass filter, to get a highshelf-like
filter, which will compensate the rolloff. The inver-
sion can quickly be done in TobyBear’s FilterEx-
plorer. The coefficients for a given +3dB frequency
are:

x = e−2πω

a0 = (1− x)−1

a1 = −xa0

The normalized frequency was set to around 0.0813.
This gives coefficients a0 = 2.5 and a1 = −1.5, thus
the transfer function of the compensation filter be-
comes

yn = 2.5xn − 1.5xn−1

This filter was found nearly ideal to compensate the
high frequency rolloff. The frequency spectrum of
the improved saw wave is shown in Figure 5. The
spectrum is nearly ideal, and remains balanced for
most of the frequency range.

Figure 5. Frequency spectrum of the improved saw
wave

Note that the frequency of the HF filter is fixed,
which causes increased amplitude when the fre-
quency of the oscillator is high. Scaling the output
by

γ = 1− 2ω.

compensates this very well. The spectrum of the
output after the compensation is very close to an
ideal bandlimited waveform created using inverse
DFT. It should be noted that the waveform is quite
asymmetric, and the HF compensation filter in-

2



creases the asymmetry even more.

4 DC offset

The algorithm was implemented in floating point
mode. In both single and double precision, there
is a considerable amount of DC offset. At low and
middle frequencies, the DC offset is around -0.376,
which converges to zero near Nyquist. Thus adding
the following DC compensation seemed to reduce
the DC offset:

DC = 0.376− 0.752ω

However, this does not eliminate it completely,
because the amount of DC for different frequencies
is very irregular. When the frequency is around
samplerate/4, the offset may be as much as -20 dB.
Although the DC offset after the compensation is
around -30 to -40 dB for most frequencies, a one
pole highpass filter with a -3dB frequency set to
10-30 Hz may be used for almost completely elimi-
nating the DC offset.

Note that when synthesizing a pulse wave, the
DC components cancel out each other, thus no ad-
ditional adjustment is needed.

5 Results

The algorithm described above gives a fairly good
sound with slight aliasing, suitable for using in real-
time sound synthesis. The oscillator has good sta-
bility, and fairly good sound clarity and brightness
down to frequencies as low as 0.01 Hz. However,
there are some drawbacks. The waveform is quite
asymmetric, which is emphasized more by the HF
compensation filter. The asymmetry may reduce
the dynamic range of the system, and it may change
the perception of the waveform if the system is non-
linear. This is shown in Figure 6.

Figure 6. Asymmetry of the waveform

Attempts were made to make the waveform

more symmetric and look more like a saw. One
method was to apply a waveshaping function,
which introduced some additional aliasing. An-
other method was to subtract a scaled sinewave
with the frequency of the fundamental from the
output of the oscillator, which does not create any
aliasing. With both methods, the cost was quite
heavy for such a small visual makeup. The differ-
ence between the adjusted waveforms and the orig-
inal was very subtle. There was no notable change
in sound or in the spectrum, the adjustments only
made the curve straighter.

In blind A/B tests during comparison with
an ideal bandlimited saw, the two waveform were
found distinguishable. The FM saw was found to
have a slightly ‘warmer’ tone. Upon closely observ-
ing the spectrum, it was found out that the rolloff
rate is not exactly 6dB/octave, and the partials
near the fundamental frequency have slightly higher
amplitude. The ideal bandlimited saw sounded
more flat, clean and raw.

The algorithm also produces a slight amount of
aliasing. This is due to the fact that the rolloff
of the harmonics is a smooth curve, not a sudden
step, as would be in an ideally bandlimited wave-
form. Figure 7. shows a spectrogram of a linear
frequency sweep.

Figure 7. Spectrogram of linear frequency sweep

The scale of the spectrogram is 0 to -90dB. There is
no audible aliasing below samplerate/4. This also
means that a 2x oversampled oscillator would pro-
duce a nearly alias-free waveform.

6 Performance

The cost of calculating one sample is moderate.
The following are needed:

1) Update the phase accumulator
2) Apply scaling function
3) Calculate sin() (can be approximated by ta-

ble lookup or polynomial)
4) Do averaging
5) Apply HF boost
6) Normalize output (compensate HF boost)
7) Apply DC filter

3



Since 2) and 6) can be precalculated, they mean
only one multiplication per sample. If more oscil-
lators are running in parallel, it may be enough to
apply the one pole filter(s) to the mixed output of
the complete oscillator block, since the filters are
linear. Thus the actual cost of the filter(s) may be
lower.

An implementation using a 9th order polyno-
mial approximation were found to take about 2x
as much CPU on an AMD Sempron procesor com-
pared to a linear interpolated wavetable oscillator
with a table size of 2048. One advantage is that
no table is needed when polynomial approximation
is used, which may be useful on environments with
limited memory. The other advantage is that the
floating point operations can be parallelized very
well on SIMD machines. Thus the actual cost of an
oscillator may be very low on machines with SIMD
instructions when more oscillators are running.

7 Other waveforms

Probably the best method for generating PWM
pulse waveforms is to create two saw waves with
a phase offset, and subtract them from each other.
The phase offset gives the pulse width of the result-
ing waveform.

Other ways of approximating a bandlimited
pulse wave with a pulse width of 50% were also
found using the FM method. It was discovered
that by squaring the output of the oscillator be-
fore feeding back, a square-like waveform is created
with harmonics at f, 3f, 5f, etc. However, both the
smoothing function and the HF compensation filter
needed to be modified. The basic function became:

xn = 0.45xn−1 + 0.55 sin(π(θ − βx2
n−1))

Note that the sign of the feedback was also changed.
The HF filter was modified to:

yn = 1.9xn − 0.9xn−1

Using this algorithm, the following waveform is
obtained:

Figure 8. Pulse wave

The spectrum is close to ideal, but the brightness
of the highs is somewhat reduced for higher fre-
quencies. This could be compensated by modifying
the scaling function, but then aliasing would be in-
creased. However, the brightness and sound quality
was found much better when obtaining a square by
subtracting two saw waves, so this method was not
investigated more. The squaring also introduces
more aliasing, which is not present when creat-
ing the pulse by subtracting two saw waves with
a phase difference. The logarithmic spectrum of
the pulse obtained using this method is shown in
Figure 9.

Figure 9. Spectrum of the pulse wave

8 Further possibilities

By multiplying the β scaling function by a value
ranging from 0 to 1, it is possible to simulate a
gradually opening filter, which creates a morphing
from sine to saw or pulse. The effect is similar to a
four pole filter, but somewhat different. Using this
method, a filter can be simulated easily without
actually using a filter. Unfortunately, resonance
cannot be simulated, so this feature is of limited
usability.

When the modulation index is very high, the
aliasing increases. After a certain point, the whole
spectrum is dominated by the aliasing, turning the
oscillator into a (bit costy) white noise generator.

9 References

Smith, Steven W. (1997). The Scientist and Engi-
neer’s Guide to Digital Signal Processing

4



10 Appendix - C pseudo code

// variables and constants

float osc; // output of the saw oscillator

float osc2; // output of the saw oscillator 2

float phase; // phase accumulator

float w; // normalized frequency

float scaling; // scaling amount

float DC; // DC compensation

float *output; // pointer to array of floats

float pw; // pulse width of the pulse, 0..1

float norm; // normalization amount

float const a0 = 2.5f; // precalculated coeffs

float const a1 = -1.5f; // for HF compensation

float in_hist; // delay for the HF filter

// calculate w and scaling

w = freq/samplerate; // normalized frequency

float n = 0.5f-w;

scaling = 13.0f * n*n*n*n; // calculate scaling

DC = 0.376f - w*0.752f; // calculate DC compensation

osc = 0.f; phase = 0.f; // reset oscillator and phase

norm = 1.0f - 2.0f*w; // calculate normalization

// process loop for creating a bandlimited saw wave

while(--sampleFrames >= 0)

{

// increment accumulator

phase += 2.0f*w; if (phase >= 1.0f) phase -= 2.0f;

// calculate next sample

osc = (osc + sin(2*pi*(phase + osc*scaling)))*0.5f;

// compensate HF rolloff

float out = a0*osc + a1*in_hist; in_hist = osc;

out = out + DC; // compensate DC offset

*output++ = out*norm; // store normalized result

}

// process loop for creating a bandlimited PWM pulse

while(--sampleFrames >= 0)

{

// increment accumulator

phase += 2.0f*w; if (phase >= 1.0f) phase -= 2.0f;

// calculate saw1

osc = (osc + sin(2*pi*(phase + osc*scaling)))*0.5f;

// calculate saw2

osc2 = (osc2 + sin(2*pi*(phase + osc2*scaling + pw)))

*0.5f;

float out = osc-osc2; // subtract two saw waves

// compensate HF rolloff

out = a0*out + a1*in_hist; in_hist = out;

*output++ = out*norm; // store normalized result

}

5


